Improved Detection of Sleeping Sickness Cases by LED Fluorescence Microscopy: Evidence from a Prospective Multi-Centric Study in the Democratic Republic of the Congo

Abstract

Background: Confirmatory diagnosis of Trypanosoma brucei gambiense human African trypanosomiasis (HAT) is based on demonstration of parasites by microscopy. However, the sensitivity of routine microscopy methods is very low, and many cases are missed and left untreated. A clinical study was conducted in the Democratic Republic of the Congo to evaluate the accuracy of improved microscopy methods in diagnosis of HAT. These included examination by fluorescence microscopy (FM) of acridine orange (AO) stained smears of whole blood and smears made following a new procedure for concentrating trypanosomes by selective lysis of red blood cells (RBC). Methodology/Principal Findings: Venous blood was collected from 213 HAT cases, 101 HAT suspects and 95 controls and used to determine the accuracy of four microscopy methods: bright field microscopy of Giemsa-stained thick blood smears, FM of AO-stained thick blood smears, FM of AO-stained thick blood smears prepared after RBC lysis and concentration, and FM of AO-stained thin blood smears prepared after RBC lysis and concentration. The sensitivity of FM using thick blood smears stained with AO was 3 times higher than bright field microscopy using Giemsa-stained thick blood smears [19.7% (95% CI: 14.9% - 25.6%) versus 6.1% (95% CI: 3.6% - 10.2%)]. When the RBC lysis and concentration procedure was included, sensitivity of the test was further enhanced to 23.0% (95% CI: 17.9% - 29.1%) with thick blood smears and 34.3% (95% CI: 28.2% - 40.9%) with thin blood smears. Specificity of all four microscopy methods was 100% (95% CI: 96.1% - 100.0%). However, the miniature anion exchange chromatography technique (mAECT) and capillary tube centrifugation (CTC) method remained more sensitive. Conclusions: These new methods have practical advantages, including shorter staining time, ease of demonstration of parasites, and the possibility of archiving slides. They could, therefore, be alternative methods to improve case detection where concentration procedures such as mAECT or CTC are not performed.

Citation

Mitashi, P.; Lutumba, P.; Lumbala, C.; Bessell, P.; Biéler, S.; Ndung’u, J.M. Improved Detection of Sleeping Sickness Cases by LED Fluorescence Microscopy: Evidence from a Prospective Multi-Centric Study in the Democratic Republic of the Congo. Microscopy Research (2015) 03 (02) 17-25. [DOI: 10.4236/mr.2015.32003]

Improved Detection of Sleeping Sickness Cases by LED Fluorescence Microscopy: Evidence from a Prospective Multi-Centric Study in the Democratic Republic of the Congo

Updates to this page

Published 1 January 2015