Rapid identification of candidate genes for resistance to tomato late blight disease using next-generation sequencing technologies
Tomato late blight, also known as the Irish famine pathogen, is one of the most destructive plant diseases
Abstract
Tomato late blight caused by Phytophthora infestans (Mont.) de Bary, also known as the Irish famine pathogen, is one of the most destructive plant diseases. Wild relatives of tomato possess useful resistance genes against this disease, and could therefore be used in breeding to improve cultivated varieties.
In the genome of a wild relative of tomato, Solanum habrochaites accession LA1777, we identified a new quantitative trait locus for resistance against blight caused by an aggressive Egyptian isolate of P. infestans. Using double-digest restriction site–associated DNA sequencing (ddRAD-Seq) technology, we determined 6,514 genome-wide SNP genotypes of an F2 population derived from an interspecific cross. Subsequent association analysis of genotypes and phenotypes of the mapping population revealed that a 6.8 Mb genome region on chromosome 6 was a candidate locus for disease resistance. Whole-genome resequencing analysis revealed that 298 genes in this region potentially had functional differences between the parental lines. Among of them, two genes with missense mutations, Solyc06g071810.1 and Solyc06g083640.3, were considered to be potential candidates for disease resistance. SNP and SSR markers linking to this region can be used in marker-assisted selection in future breeding programs for late blight disease, including introgression of new genetic loci from wild species. In addition, the approach developed in this study provides a model for identification of other genes for attractive agronomical traits.
This article is the result of funding from the World Vegetable Center. The World Vegetable Center is partly funded by the UK Department for International Development
Citation
Arafa, R.A.; Rakha, M.T.; Soliman, N.E.K.; Moussa, O.M.; Kamel, S.M.; Shirasawa, K. 2017. Rapid identification of candidate genes for resistance to tomato late blight disease using next-generation sequencing technologies. PLoS ONE. 12(12): e0189951.