Synthesis, Reduction Potentials, and Antitubercular Activity of Ring A/B Analogues of the Bioreductive Drug (6S)-2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824).
Abstract
The nitroimidazooxazine S-1 (PA-824) is a new class of bioreductive drug for tuberculosis. A series of related bicyclic nitroheterocycles was synthesized, designed to have a wide range of one-electron reduction potentials E(1) (from −570 to −338 mV, compared with −534 mV for S-1). The observed E(1) values closely correlated with the σm values of the heteroatom at the 4/8-position of the adjacent six-membered ring. Although the compounds spanned a range of E(1) values around that of S-1, only the nitroimidazothiazines showed significant antitubercular activity (at a similar level of potency), suggesting that E(1) is not the main driver of efficacy. Furthermore, there was a correlation between activity and the formation of imidazole ring-reduced products at the two-electron level, pointing to the potential importance of this reduction pathway, which is determined by the nature of the substituent at the 2-position of the 4-nitroimidazole ring.
Citation
Thompson, A.M.; Blaser, A.; Anderson, R.F.; Franzblau, S.G.; Denny, W.A.; Palmer, B.D.; Shinde, S.S.; Zhenkun Ma. Synthesis, Reduction Potentials, and Antitubercular Activity of Ring A/B Analogues of the Bioreductive Drug (6S)-2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824). Journal of Medicinal Chemistry (2009) 52 (3) 637-645. [DOI: 10.1021/jm801087e]