The single Andigenum origin of Neo-Tuberosum potato materials is not supported by microsatellite and plastid marker analyses

Abstract

Neo-Tuberosum refers to cultivated potato adapted to long-day tuberization and a syndrome of related morphological and physiological traits, developed by intercrossing and selection of short-day adapted potatoes of the Solanum tuberosum Andigenum Group, native from the Andes of western Venezuela to northern Argentina. This re-creation of the modern potato helped support the theory of an Andigenum Group origin of potato in temperate regions and the possibility to access the largely untapped diversity of the Andigenum Group germplasm by base broadening breeding. This Neo-Tuberosum derived theory, the re-creation of the modern potato from Andigenum germplasm, has been universally accepted for almost 40 years, and has had tremendous impact in planning some breeding programs and supporting phylogenetic conclusions in cultivated potato. We show, with microsatellite (simple sequence repeat, SSR) and plastid DNA marker data, that Neo-Tuberosum germplasm is closely related to Chilotanum Group landraces from lowland south-central Chile rather than to Andigenum Group germplasm. We interpret this quite unexpected result to be caused by strong rapid selection against the original Andigenum clones after unintended hybridization with Chilotanum Group germplasm. In addition, we show that Neo-Tuberosum and Andigenum Group germplasm did not serve to broaden the overall genetic diversity of advanced potato varieties, but rather that Neo-Tuberosum lines and lines not using this germplasm are statistically identical with regard to genetic diversity as assessed by SSRs. These results question the long-standing Neo-Tuberosum derived theory and have implications in breeding programs and phylogenetic reconstructions of potato.

Citation

Theoretical and Applied Genetics (2009) 118 (5) 963-969 [doi: 10.1007/s00122-008-0953-6]

The single Andigenum origin of Neo-Tuberosum potato materials is not supported by microsatellite and plastid marker analyses

Updates to this page

Published 1 January 2009